Single - Walled 4 . Single - Walled Carbon Nanotubes
نویسندگان
چکیده
Single-walled carbon nanotubes (SWCNTs) are hollow, long cylinders with extremely large aspect ratios, made of one atomic sheet of carbon atoms in a honeycomb lattice. They possess extraordinary thermal, mechanical, and electrical properties and are considered as one of the most promising nanomaterials for applications and basic research. This chapter describes the structural, electronic, vibrational, optical, transport, mechanical, and thermal properties of these unusual one-dimensional (1-D) nanomaterials. The crystallographic (Sect. 4.2.1), electronic (Sect. 4.2.2), vibrational (Sect. 4.2.3), optical (Sect. 4.4), transport (Sect. 4.5), thermal (Sect. 4.6.1), and mechanical (Sect. 4.6.2) properties of these unusual 1-D nanomaterials will be outlined. In addition, we will provide an overview of the various methods developed for synthesizing SWCNTs in Sect. 4.3. Even after more than two decades of extensive basic studies since their discovery, carbon nanotubes continue to surprise researchers with potential new applications and interesting discoveries of novel phenomena and properties. Because of an enormous thrust towards finding practical applications, carbon nanotube research is actively being pursued in diverse areas including energy storage, molecular electronics, nanomechanical devices, composites, and chemical and bio-sensing. Structurally, carbon nanotubes are made up of sp2-bonded carbon atoms, like graphite, and can be conceptually viewed as rolled-up sheets of single-layer graphite, or graphene. Their diameter typically lies in the nanometer range while their length often exceeds microns, sometimes centimeters, thus making them 1-D nanostructures. Depending on the number of tubes that are arranged concentrically, carbon nanotubes are further classified into single-walled and multiwalled nanotubes. Single-walled carbon nanotubes, the subject of this chapter, are especially interesting. They are ideal materials in which to explore one-dimensional physics and strong Coulomb correlations. In addition, their cylindrical topology allows them to exhibit nonintuitive quantum phenomena when placed in a parallel magnetic field, due to the Aharonov–Bohm effect. A number of research groups have found exotic many-body effects through a variety of transport, optical, magnetic, and photoemission experiments. Their electronic properties are very sensitive to their microscopic atomic arrangements and symmetry, covering a wide spectrum of energy scales. They can be either metallic or semiconducting with varying band gaps, depending on their diameter and chirality. Semiconducting nanotubes are particularly promising for photonic device applications with their diameter-dependent, direct band gaps, while metallic tubes are considered to be ideal candidates for a variety of electronic applications such as nanocircuit components and power transmission cables.
منابع مشابه
A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes
In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...
متن کاملRadius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array
In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملAdsorption of 1-chloro-4-nitrobenzene from aqueous solutions onto single-walled carbon nanotubes
In this study adsorption of 1-chloro-4-nitrobenzene on single walled carbon nanotubes has been investigated. The effect of contact time, pH, initial concentration of 1-chloro-4-nitrobenzene, adsorbent dosage and temperature on its adsorption has been carried out in order to find optimum adsorption conditions. Adsorption isotherms and related constants were also determined. Results showed that ...
متن کاملA PARAMETRIC STUDY ON THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES OVER CO-MO/MGO NANOCATALYST IN A FLUIDIZED BED REACTOR BY CCVD METHOD
Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined t...
متن کامل